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Abstract. This paper describes a repeatable method for reengineering a procedural 
system to an object-oriented system. The method uses coupling metrics to assist a domain 
expert in identifying candidate objects. An application of the method to a simple program 
is given, and the effectiveness of the various coupling metrics are discussed. We perform 
a detailed comparison of our repeatable method with an ad hoc, manual reengineering 
effort based on the same procedural program. The repeatable method was found to be 
effective for identifying objects. It produced code that was much smaller, more efficient, 
and passed more regression tests than the ad hoc method. Analysis of object-oriented 
metrics indicated both simpler code and less variability among classes for the repeatable 
method. 
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1   Introduction 
The purpose of our research is to define a method and tools to assist software developers 
in the process of converting code in a procedural language, such a C, to an object-
oriented language such as C++ or Java. Our hypothesis is that it is possible to support this 
process with a simple repeatable method that yields higher quality code than an ad hoc 
reengineering effort. 

The history of programming and software engineering demonstrates the continual 
evolution towards larger grained programming constructs and more human focused 
languages (Frakes and Kang 2005). One aspect of this evolution is the development of 
more reusable systems based on object-oriented design and programming. One way of 
achieving this is by reengineering existing procedure-based systems to object-oriented 
systems. Companies sometimes use the migration from C to C++ or Java, for example, as 
opportunities for better reuse (Dunn and Knight 1991; Pole 1991; Lanza 2003). In 
addition to reengineering, identifying objects in procedural programs can enhance 
understanding of the system design and domain constructs, make debugging easier, and 
simplify program maintenance (Liu and Wilde 1990; McFall and Sleith 1993; Livadas 
and Johnson 1994). 

Many companies have large inventories of legacy code written in procedural languages.  
When these companies migrate to new object-oriented architectures, they do not want to 
start from scratch. Therefore, a need exists for a methodology that can analyze existing 
procedural code and identify related functions and data that can be encapsulated into 
reusable objects in the application domain. There have been many studies of the 
procedural to object-oriented reengineering process (Pole 1991; Newcomb and Kotik 
1995; Achee and Carver 1997; Fanta and Rajlich 1998; Valasareddi and Carver 1998; 
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Cimitile, Lucia et al. 1999; Siff and Reps 1999; Abd-El-Hafiz 2000; Canfora, Cimitile et 
al. 2001; Gui 2003; Lanza 2003). 

Our methodology differs from others both in its simplicity, and its emphasis on empirical 
analysis and evaluation. Our method analyzes the procedural code and aids the 
programmer in determining how to create classes from groups of functions (Frakes, 
Kulczycki et al. 2006; Frakes, Kulczycki et al. 2008). The method uses various coupling 
metrics to determine how strongly any two functions are related, and therefore, whether 
they belong in the same class in an object-oriented design. The method uses the premise 
that program elements that exhibit certain kinds of coupling can be grouped together to 
form classes. We evaluated eight different coupling metrics of varying degrees of 
complexity. We also compared our method with an ad hoc reengineering effort. Both the 
repeatable and ad hoc methods were used to reengineer the ccount metrics tool, written in 
C, to object-oriented programs in C++. For the ad hoc method, a professional 
programmer manually reengineered the procedural code (Suryanarayanan and Frakes 
2003). The programmer inspected the C code and designed the object-oriented code 
based on principles that he considered appropriate. 

Section 2 of this paper describes the reengineering methodology that our study is based 
on, and Section 3 details the coupling metrics we used to help identify objects. We 
present an application of our method in Section 4 to a simple procedural program, and we 
use it to analyze the effectiveness of the various coupling metrics given in section 3. In 
Section 5 we compare the results of our method with an ad hoc reengineering effort. 

2   Reengineering methodology 
The method evaluated in this study proposes steps to be taken in reengineering a 
procedural system to an object-oriented system. The method delivers reusable objects 
from existing legacy code. It is based on the premise that program elements that exhibit 
certain kinds of coupling can be grouped together to form objects. The original steps to 
be taken in the reengineering process are borrowed from a method suggested by Pole 
(Pole 1991). They are as follows: 

1. The domain expert creates a function stop list. A stop list contains functions 
identified by the domain expert as utility functions that do not perform tasks 
specific to the domain. 

2. A call graph is generated. A tool or manual scanning of the code base is used to 
generate a call graph that shows the flow of control in the legacy code. 

3. Dependency and context lists are created. A dependency list identifies all the 
functions invoked from a given function. A context list does the reverse—it 
identifies the functions that invoke or use a given function. 

4. Objects are identified. In this step the metrics are calculated and the potential 
objects are identified. This step turned out to be the most involved step in the 
process. We discuss later the details of this process.  

5. Domain expert chooses objects. The domain expert examines candidate objects 
and determines whether they are reasonable. Variables common to two or more 
functions are examined for their appropriateness as object attributes. Leftover 
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functions including the functions in the stop list can be converted into individual 
objects or packaged as utility objects. 

In the course of this research, we found that the 4th step (identifying objects) took a 
disproportionately longer time than the others. We address this in the section on future 
work and give a revised list of steps that is more in line with what we experienced. 

2.1   Comparison with other methodologies 
There have been many methods proposed for identifying objects in procedural programs. 
A brief but good summary can be found in (Canfora, Cimitile et al. 2001). Table 1 
presents a comparison of some selected methods. It compares the approach each method 
takes to object identification, how each method is evaluated, and the extent to which each 
method is automated. 

Newcomb and Kotik proposed a transformation programming system based on the 
Software Refinery tool (Newcomb and Kotik 1995). The tool took code written in a 
procedural language and transformed it to an abstract syntax tree. Based on an analysis of 
the AST, functionally equivalent code was produced in an object-oriented language. The 
system went beyond simple object identification and attempted to construct class 
inheritance hierarchies. The tool was designed to look for opportunities where code could 
be compressed and/or reused. In a successful transformation, the object-oriented code 
was smaller and the number of total operations was reduced. The process was entirely 
automated, though human assistance could be used to improve the results. 

Siff and Reps proposed a technique for identifying modules in procedural programs using 
concept analysis (Siff and Reps 1999). When reengineering a C program to a C++ 
program using their method, “the C program’s struct types are the starting point for the 
C++ program’s classes.” (p. 750) They demonstrated their technique on a procedural 
program that included both stack and queue data structures. The groupings suggested by 
the concept analysis performed well in identifying the functions that belonged to the two 
data structures. The authors emphasize that a software developer can control the level of 
granularity of the groupings given by the concept analysis. 

Abd-El-Hafiz also focused on object identification in his research, but used cluster 
analysis for the purpose (Abd-El-Hafiz 2000). He demonstrated his work on two 
programs, one of them the same ccount program that we use for our example later in the 
paper. He evaluated the effectiveness of his method by considering whether the proposed 
groupings corresponded to obvious data structures, and how well they corresponded to 
the modules in the procedural system. 

Canfora et al. reengineered a complex system consisting of around 200,000 lines of code 
(Canfora, Cimitile et al. 2001). They looked at various object identification 
methodologies that were available at the time, including concept analysis and cluster 
analysis. They found that no one technique worked best in every situation. Their 
reengineering effort ended up using a variety of techniques, all overseen by a domain 
expert software engineer who chose the grouping tools and made the final decisions 
about how to group objects. 
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Approach Basis for object 
identification 

Evaluation Automation 

Newcomb and 
Kotik 

Software Refinery (TM) 
transformation 
programming system 

Functional 
correctness; increase 
in level of reuse 

Achieves a “very 
high level of 
automation” in 
transforming code 

Siff and Reps Use the data in 
procedural programs, 
and apply concept 
analysis to find objects 

Appropriate 
partitioning of 
functions in multiple 
data structures 

Partitioning process 
is automated; 
granularity of results 
can be dynamically 
modified 

Abd-El-Hafiz Use a correlation matrix 
between functions and 
attributes, and apply 
clustering neural 
networks to find objects  

Correct identification 
of data structures; 
Conformance of 
clusters to modules 
in original system 

Partitioning process 
is automated; results 
should be good 
enough to avoid the 
need for a domain 
expert 

Canfora et al. A domain expert uses a 
variety of existing 
approaches to object 
identification, and 
tailors the results based 
on his or her knowledge 
of the system 

In a large 
reengineering effort, 
the authors found 
that no single 
approach was best in 
all cases  

Object identification 
was automated 
using various 
systems; domain 
expert made the 
final decision 
regarding groupings 

Frakes and 
Kulczycki 

Function pairs that are 
highly coupled are 
candidates for being 
methods in the same 
object 

Coupling metrics are 
evaluated by domain 
engineers; a 
reengineered 
program using the 
method is compared 
to a baseline (ad hoc) 
reengineering effort  

Partitioning process 
can be automated, 
but simpler metrics 
can be computed by 
hand; domain expert 
makes the final 
design decisions 

Table 1. A comparison of selected approaches to object identification 

3   Coupling Metrics 
This section describes the metrics that we used in our methodology. Each metric 
describes a distinct relationship between any two functions in the legacy system. We call 
them coupling metrics because they are based on the various forms of module coupling, 
such as those given in (Frakes, Fox et al. 1991), and because they indicate the 
dependency and the amount of communication that takes place between functions. 
The metrics can be divided into three broad categories based on the kind of coupling that 
motivated them. 
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1. Invocation metrics. These metrics are based on routine call coupling as described 
in (Pressman 2005). They rank functions based on how often one function 
invokes another. 

2. Shared parameter metrics. This category currently contains only one metric—
the shared parameter metric. It is based on data element coupling as described in 
(Frakes, Fox et al. 1991), which exists when data is passed from one function to 
another through a disciplined interface such as a parameter list. 

3. Shared variable metrics. These metrics are based on data definition coupling as 
defined in (Frakes, Fox et al. 1991). Data definition coupling occurs when 
functions manipulate data of the same type. 

Our goal is to use these metrics to determine if any two functions in the legacy system 
belong together in the same class when we move to an object-oriented system. We looked 
at many metrics because we did not know which ones would be the most effective in 
identifying objects. We discuss the effectiveness of the metrics we used and the prospect 
of finding additional metrics in Section 4 of this paper. 
The following subsections present eight different metrics—three invocation metrics, one 
shared parameter metric, and four shared variable metrics. Table 2 gives the definitions 
of several functions that are used in the definitions of these metrics. With the exception of 
the source function, these helper functions are self-explanatory. The source function 
gives the set of variable declarations associated with a particular variable, tracing back 
through calls if the variable is a formal parameter. We discuss the source function in 
further detail when we look at the shared variable metric. 

 

Function Definition 

invocs(f1, f2) Number of times that function f2 is invoked in the body of f1 

params(f0) 
{ vt,n | vt,n is a variable of type t with name n that appears in the 
          parameter list of f0 } 

vars(f0) { vt,n | variable vt,n of type t with name n appears in the body of f0 } 

source(v, f0) { vdec | variable v appears in f0 and 
        vdec is a declaration of variable v, or 
        v is a formal parameter in f0, and vdec ∈ source(v1, f1) where 
                f1 invokes f0, and vdec is the actual parameter in that 
                invocation that corresponds to v } 

count(v, f0) Number of times that variable v appears in the body of f0 

Table 2. Functions used in the definitions of the eight coupling metrics. 
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3.1   Invocation metrics 
When a function f1 calls another function f2, it indicates that they perform related tasks 
and suggests that those functions should be considered for inclusion in the same object. 
When a method from one class invokes a method from another class, those classes are 
related by routine call coupling (Pressman 2005). As the name implies, this form of 
coupling is routine in object-oriented programs. Nevertheless, when a function f1 calls 
another function f2 in a procedural program, it may indicate that f2 can translate to a 
private method in same class that contains f1. Therefore, these metrics may be considered 
helpful in identifying objects. 

Direct invocation metric. This metric identifies the number of times that a function f1 
calls another function f2. The metric is defined simply as 

N(f1, f2) = invocs(f1, f2). 
Indirect invocation metric. This metric identifies the number of times that a function f1 
indirectly calls a function f2 by way of a third function fmid. It is simply the sum of the 
direct invocation metrics for f1 and fmid, and fmid and f2. However, if either of the direct 
invocation metrics is zero, then no indirect invocation takes place, so the value of the 
indirect invocation metric is zero. The metric is defined in terms of the direct invocation 
metric as 

Nind(f1, f2) = N(f1, fmid) + N(fmid, f2) where N(f1, fmid) > 0 and N(f2, fmid) > 0 
Recursive invocation metric. This metric identifies the number of times a function f1 
calls function f2 and f2 calls back to f1. The value of the metric is the sum of the direct 
invocations from f1 to f2 and f2 to f1. Like the indirect invocation metric, the value of this 
metric is zero if no recursion exists. The metric is defined as 

Nrec(f1, f2) = N(f1, f2) + N(f2, f1) where N(f1, f2) > 0 and N(f2, f1) > 0 

3.2   Shared parameter metrics 
Data element coupling occurs when modules access shared data that is passed in through 
a parameter list. If a client passes the same stack to functions in modules M1 and M2, then 
those modules exhibit data element coupling.  
Shared parameter metric. This metric identifies the formal parameters that are common 
between two functions. It does this by counting the number of formal parameters that 
have the same type and same name. The metric is defined as 

P(f1, f2) = | params(f1) ∩ params(f2) | 

3.3   Shared variable metrics 
Shared variable metrics look at all variables—including parameters, global variables, and 
local variables—that are shared by functions. These metrics are based on data definition 
coupling (Frakes, Fox et al. 1991). Data definition coupling occurs when modules 
manipulate data of the same type. For example, if two modules modify a data structure of 
type stack, they exhibit data definition coupling. 
There are two different kinds of shared variable metrics. The first, more sophisticated, 
metric considers variables to be shared only if they can be traced to a common 
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declaration. For example, suppose variable x is declared in function f0, which passes it to 
f1 and f2. Furthermore, suppose f2 obtains x through a formal parameter y, which it then 
passes to f3. Then functions f0, f1, f2, and f3 are all related, because they all use or 
manipulate a value that originated with a variable declared in f0 (see Figure 1).  

 
Figure 1. The functions all use a variable that can be traced to the same source. 

Shared variable metric. This metric identifies variables in two functions that share a 
common source. The metric is defined as 

V(f1, f2) = | { v | source(v, f1) ∩ source(v, f2) | ≠ ∅ } | 

The function source(v, f1) gives the set of sources (variable declarations) for variable v in 
f1. If v is not a formal parameter in f1, then v will have a unique source. However, if v is a 
formal parameter, then v’s source set includes the elements in the source sets of all 
corresponding actual parameters. Therefore, the size of v’s source set may be greater than 
one. 
The simpler version of the shared variable metric considers functions to be related if they 
share variables with the same type and the same name. 
Shared type-name variable metric. This metric identifies all variables in two functions 
that have a common type and name. The metric is defined as 

V′(f1, f2) = | vars(f1) ∩ vars(f2) | 

We also include a variation for each of these metrics in our analysis. The metrics above 
count declarations of variables rather than uses. For example, if the only variable shared 
by two functions was the global stack s, the shared variable metric for those functions 
would be one. Even if s appears three times in the body of the first function and four 
times in the body of the second function, the value of the metric is still one. The metrics 
below count the static occurrences (the tokens rather than types) of common variables. 

Shared variable tokens metric. This metric counts the static occurrences of all variables 
in two functions that share a common source. The metric is defined in terms of the shared 
variable metric as 

Vtokens(f1, f2) = ∑ count(v, f1) + count(v, f2) where v ∈ V(f1, f2) 

Shared type-name variable tokens metric. This metric counts the static occurrences of 
all formal parameters, global variables, and local variables that are common between two 
functions. The metric is defined as 

V′tokens(f1, f2) = ∑ count(v, f1) + count(v, f2) where v ∈ V′(f1, f2) 
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Table 3 summarizes the metrics and their definitions. 
 

Name Notation Definition 

Direct Invocation Metric N(f1, f2) invocs(f1, f2) 

Recursive Invocation 
Metric Nrec(f1, f2) 

N(f1, f2) + N(f2, f1) where 

| N(f1, fmid) | > 0 and | N(f2, fmid) | > 0 

Indirect Invocation Metric Nind(f1, f2) 
N(f1, fmid) + N(fmid, f2) where 

| N(f1, fmid) | > 0 and | N(f2, fmid) | > 0 

Shared Parameter Metric P(f1, f2) | params(f1) ∩ params(f2) | 

Shared Variable Metric V(f1, f2) | { v | history(v, f1) ∩ history(v, f2) | ≠ ∅ } | 

 

∑ count(v, f1) + count(v, f2) 
Shared Variable Tokens 
Metric Vtokens(f1, f2) 

v ∈ V(f1, f2) 

Shared Type-Name 
Variable Metric V′(f1, f2) | vars(f1) ∩ vars(f2) | 

     

∑ count(v, f1) + count(v, f2) 
Shared Type-Name 
Variable Tokens Metric V′tokens(f1, f2) 

v ∈ V′(f1, f2)  

Table 3. Notations and definitions for the eight coupling metrics used in the study. 

4   Reengineering ccount 
The procedural system analyzed in the study was ccount, a metrics tools implemented in 
C that reports counts of commentary and non-commentary source lines and comment-to-
code ratios (Frakes, Fox et al. 1991). The ccount tool was initially written in K & R C 
and later converted to ANSI C. For the purpose of this study the ANSI C version was 
used. 

The statistics collected for the ccount tool including the main function are: 

• Number of non-commentary lines of code: 749  

• Number of files: 7 

• Number of functions: 17 

The ccount metric tool was used because it is tractable for a small case study, but non-
trivial, so that the case study is still relevant. 

This section shows how the method was applied to ccount. Throughout the process of 
evaluating the proposed method, the following metrics were captured: 
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• The time taken at each step of the process.  

• The number of domain specific objects and utility objects created.  

• The number of functions and lines of codes in the legacy system.  

The authors acted as the domain experts.  

4.1   Domain expert creates function stop list. 
For ccount the functions identified to be in the stop list were string manipulation and file 
manipulation functions that are provided by the standard C libraries. Since the system 
was relatively small, rather than providing the list as a starting point, we analyzed the 
output from the next step to help us come up with the functions to be placed in the stop 
list. The time taken for this step was 1 hour. 

4.2   A call graph is generated 
The cflow tool was used to identify the flow of control (call structure) of ccount. The 
output from cflow is in a text format, which we then converted to the graphical 
representation given in Figure 2. The cflow tool provides options to generate output in 
both a top-down and bottom-up manner. The graphical representation of the bottom-up 
output would simply be the call graph in Figure 2 with the arrows reversed. The time 
taken for this step was 2 hours. 

 
Figure 2. Call graph for ccount tool. 

4.3   Dependency and context lists are created. 
Using the call graph created in the previous step, the dependency list and the context list 
were created. The dependency list indicates the functions that are invoked by a given 
function. For example, the function Classify_Lines uses functions Start_Tokenizer, 
Get_Token, and Find_Function_Name. The context list indicates the functions that 
invoke a given function. For example, Create_Node is used by Append_Element. In this 
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example, the only function invoked by multiple functions is Error, which is used by seven 
other functions. The time taken for this step was 2 hours. 

4.4   Objects are identified 
This step was by far the most involved and the most time-consuming. Therefore, to make 
the presentation clearer we have divided it into three sub-steps: collection of summary 
data, calculation of metrics, and identification of candidate objects. The total time taken 
for this step was 48 hours. 

4.4.1   Summary data is collected 
To determine the various metrics, we first identified the variables and functions accessed 
by each individual function. The collection of the required data for each function was 
done manually. Lack of a tool for collecting the data made the process time consuming. 

For each function the following data was collected. 

• The parameters passed to it 

• The local variables defined and accessed 

• The global variables accessed 

• The functions invoked along with the parameters passed to those functions 

• The data type returned by the function 

For each variable (parameters, local variables, and global variables) the following was 
captured. 

• Its name 

• Its data type 

• Its scope 

• The number of static accesses made to it 

Shared variables were identified by looking at each file to determine global variables or 
local variables manipulated by a function. Ccount did not have any global variables, but it 
did have variables with file scope that were manipulated by more than one function in 
that file. 

Summary Data Collection Table 

Check_Options (params.c) 

Parameters char *options 2 

 char *optionargs 1 

Global variables  0 

Local variables char *ch_ptr 8 
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Functions invoked Error 2 

  Clean_Command_Line (params.c) 

Parameters char *options 2 

 char *optionargs 2 

 char **argv[] 9 

 int *argc 6 

Global variables  0 

Local variables char **new_argv 24 

 char **files 9 

 char *ch_ptr 11 

 int new_argc 18 

 int num_files 6 

 int arg_index 16 

 int file_index 4 

Functions invoked Check_Options(options, optionargs) 1 

 Error(…) 8 

Table 4. Summary data for functions Check_Options and Clean_Command_Line. 

An example of the information collected in this step is given in Table 4. From the table 
we can tell, for example, that the function Check_Options has two parameters, options 
and optionargs. The parameter options is accessed twice in the body of the function, and 
optionargs is accessed once. The function also accesses the locally defined variable 
ch_ptr eight times, and it invokes the function Error twice. 

4.4.2   Metrics are calculated 
Once the summary data for each function was collected, the coupling metrics were 
calculated for each pair of functions, provided that neither function is in the stop list. For 
example, Table 5 gives the data invocation metric calculated for the ccount functions. 
Function pairs that had a metric value of zero were not included in the table. 
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Table 5. Non-zero direct invocation metrics for ccount. 

Most of the metrics can be calculated simply by inspecting the summary data for the two 
functions involved in the metric. The exceptions are the indirect invocation metric, the 
shared variables metric, and the shared variable tokens metric. Table 6 shows each of the 
eight metrics in which the first function (f1) is Clean_Command_Line and the second 
function (f2) is Check_Options. The following paragraphs indicate how to calculate each 
of these metrics. 

First function (f1) Second function (f2) N(f1, f2) 

Main Get_Parameters 1 

Main Count_Lines 1 
Main Report_Metrics 1 

Get_Parameters Clean_Command_Line 1 
Get_Parameters Error 1 

Count_Lines Create_List 1 
Count_Lines Error 1 

Count_Lines Classify_Line 1 
Count_Lines Append_Element 3 

Report_Metrics Error 2 
Report_Metrics Is_Empty_List 1 

Report_Metrics Delete_Element 1 
Clean_Command_Line Check_Options 1 

Clean_Command_Line Error 8 
Classify_Line Start_Tokenizer 1 

Classify_Line Get_Token 1 
Classify_Line Find_Function_Name 1 

Append_Element Create_Node 2 
Delete_Element Destroy_Node 1 

Check_Options Error 2 
Get_Token Error 1 

Create_Node Error 2 
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N(f1, f2) 1 

Nrec(f1, f2) 0 
Nind(f1, f2) 0 

P(f1, f2) 2 
V(f1, f2) 2 

Vtokens(f1, f2) 7 

V′(f1, f2) 3 

V′tokens(f1, f2) 26 

Table 6. Metrics for f1 = Clean_Command_Line and f2 = Check_Options. 

Invocation metrics. From Table 3 we see that Clean_Command_Line calls 
Check_Options once, yielding a direct invocation metric of one. Since Check_Options 
never calls Clean_Command_Line back, the recursive invocation metric is zero. In fact, 
in this particular study all of the recursive invocation metrics turned out to be zero. The 
indirect invocation metric requires slightly more work. Looking at Table 3, we see that 
the only other function besides Check_Options that is called by Cleam_Command_Line 
is the Error function, which is called eight times. If the Error function (whose record is 
not shown in Table 3) had called Check_Options n times, then the indirect invocation 
metric would have been 8 + n. Since the Error function never actually invokes 
Check_Options, the indirect invocation metric is zero. Note that the direct and indirect 
invocation metrics are not necessarily symmetric. For example, we do not—in general—
have Nind(f1, f2) = Nind(f2, f1). However, the recursive invocation metric is symmetric. 
Shared parameter metrics. We can also tell directly from Table 3 that functions 
Check_Options and Clean_Command_Line both have a parameter named options of type 
char and a parameter named optionargs of type char. For this reason, the value of the 
shared parameter metric is two. Note that, in this study, we ignored pointers when 
determining types—so variables declared with char, char**, and char[] were all 
considered to have the same type.  
Shared variable metrics. To calculate the shared variables metric we must determine 
which variables in Clean_Command_Line and Check_Options can potentially originate 
from the same source. From Table 3 we see that there are only three variables in 
Check_Options, so there are three candidates. The variable ch_ptr is declared in the body 
of Check_Options, so the only way that Clean_Command_Line can share this variable is 
if it is passed to Clean_Command_Line through some sequence of function calls. 
However, a quick look at the flow graph (Figure 2) tells us that although 
Clean_Command_Line calls Check_Options, there is no call path from Check_Options to 
Clean_Command_Line. Therefore, even though Clean_Command_Line also has a 
variable named ch_ptr of type char, they are not considered shared for the purposes of 
this metric. On the other hand, both options and optionargs are formal parameters in 
Check_Options, and since Clean_Command_Line calls Check_Options, we know that 
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Check_Options must share its formal parameters with the actual parameters passed to it 
by Clean_Command_Line. The fact that the actual parameters passed by 
Clean_Command_Line also happen to be named options and optionargs is unrelated to 
the calculation of this metric; the relevant fact is that the variables come from the same 
source. Thus, the value for the shared variable metric is two, and the value for the shared 
variable tokens metric is the sum of static occurrences for these variables in each 
function: 3 in Check_Options + 4 in Clean_Command_Line = 7.  
The shared type-name variables metric is significantly easier to calculate. Both functions 
have variables with type-name combinations char/options, char/optionargs, and 
char/ch_ptr. Therefore the value of this metric is three, and the value of the shared type-
name variable tokens metric is: 11 occurrences of these variables in Check_Options + 15 
occurrences in Clean_Command_Line = 26. 

4.4.3   Candidate objects are identified 
Once the individual metrics have been are calculated, a threshold is determined for each 
metric, and each metric is individually evaluated to come up with candidate objects. In 
this study, the following guidelines were taken into consideration. 

• In C++ the function main is not part of any object, therefore the coupling metrics 
in relation to that function were not used. 

• If the coupling metric for two functions was above or equal to the threshold value, 
both were placed in the same object. 

• If a function f1 has the same coupling metric with multiple functions in different 
objects, then this is used as an indication that f1 should be placed in a separate 
object as it might be a utility function. 

The decision of which threshold to use was empirical to ensure that functions don’t 
cluster in one object. In the case of the direct invocation metric, the vast majority of 
function pairs had a metric value of zero, several functions had a value of one, and a few 
functions had a value greater than one (see Figure 3). A threshold value of one was 
chosen—a value of anything greater than one would have meant that too many functions 
would be in classes by themselves. 
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Figure 3. Distribution of values for the direct invocation metric. 

Using the guidelines outlined above, the main function was placed in a class by itself, and 
the Error function was identified as a utility function, so it was also placed in a separate 
class. This led to the following partitioning of the functions into objects. 

Object 1 Get_Parameters, Clean_Command_Line, Check_Options 
Object 2 Count_Lines, Classify_Line, Start_Tokenizer, Get_Token, 
  Find_Function_Name, Create_List, Append_Element, Create_Node 
Object 3 Report_Metrics, Is_Empty_List, Delete_Element, Delete_Node 

Object 4 Error 
Object 5 Main 

The process of determining a threshold and finding candidate objects was repeated for all 
of the metrics, yielding the partitioning of functions in Table 7. The recursive invocation 
metric is not included because recursive calls did not occur in the application. 

Metric Candidate Objects 
Get_Parameters, Clean_Command_Line, Check_Options 
Count_Lines, Classify_Line, Start_Tokenizer, Get_Token, 
Find_Function_Name, Create_List, Append_Element, Create_Node 

Report_Metrics, Is_Empty_List, Delete_Element, Delete_Node 

Direct 
invocation 

Error 
Get_Parameters, Clean_Command_Line, Check_Options 
Count_Lines, Classify_Line, Start_Tokenizer, Get_Token, 
Find_Function_Name, Append_Element, Create_Node 

Report_Metrics, Delete_Element, Delete_Node 

Indirect 
invocation 

Error, Create_List, Is_Empty_List 
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Get_Parameters, Clean_Command_Line, Check_Options 
Count_Lines, Classify_Line, Start_Tokenizer, Report_Metrics, Error 
Delete_Element, Append_Element, Create_Node, Is_Empty_List, 
Create_List 

Shared 
parameters 

Destroy_Node, Find_Function_Name, Get_Token 
Get_Parameters, Clean_Command_Line, Check_Options 
Count_Lines, Classify_Line, Start_Tokenizer, Get_Token, 
Find_Function_Name, Append_Element, Create_Node 

Report_Metrics, Delete_Element 

Shared 
variables 

Error, Create_List, Is_Empty_List, Destroy_Node 
Get_Parameters, Clean_Command_Line, Check_Options 
Count_Lines, Classify_Line, Start_Tokenizer, Get_Token, 
Find_Function_Name, Append_Element, Create_Node 

Report_Metrics, Delete_Element, Destroy_Node 

Shared 
variable 
tokens 

Error, Create_List, Is_Empty_List 
Get_Parameters, Clean_Command_Line, Check_Options 
Count_Lines, Classify_Line, Start_Tokenizer, Get_Token, 
Find_Function_Name 

Report_Metrics, Create_Node, Append_Element, Delete_Element 

Shared 
type-name 
variables 

Error, Create_List, Is_Empty_List, Destroy_Node 
Get_Parameters, Clean_Command_Line, Check_Options 

Count_Lines, Classify_Line, Start_Tokenizer, Get_Token, 
Find_Function_Name 

Report_Metrics, Create_Node, Append_Element, Delete_Element 

Shared 
type-name 
variable 
tokens 

Error, Create_List, Is_Empty_List, Destroy_Node 

Table 7. Candidate objects for each of the coupling metrics. 

4.5   Domain expert chooses objects 
In this step the domain expert analyzed the objects for reasonableness. Each metric was 
analyzed individually, and the results of this analysis are presented here. One of the 
criteria used in the analysis was whether the partitions corresponded to the modules in the 
C program, which exhibited good modular design in the first place. In particular, we were 
always interested to see if the candidate objects for a given coupling metric successfully 
identified the list data type. The time taken for this step was 16 hours. 

The direct invocation metric provides a good breakup of the objects, but was unable to 
satisfactorily identify the list data type. It groups the functions that relate to extracting 
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parameters since those functions invoke each other. However, the list functions do not 
necessarily invoke each other. The indirect invocation metric provides a breakup of 
objects very similar to the direct invocation metric. And similarly, it is not able to 
identify the list data type. This may indicate that these metrics will give similar results in 
general. If so, then the direct invocation metric should be used since it is easier to 
calculate. 

The shared parameters metric is able to identify the list data type as it clusters all but one 
function in the same object. It places the functions Error and Report_Metrics in the same 
object as functions which classify lines. Since this metric only considers the parameter 
list of functions it does not always separate functions that have separate responsibilities. 

The calculation of the shared variable metrics in general took up a substantial amount of 
time, but their results were not very different to the direct invocation metric. None of the 
shared variable metrics were able to identify the list data type; they all tended to have the 
functions related to the abstract data type either in the utility object or grouped with the 
Report_Metrics function. 
Most coupling metrics placed the function Report_Metrics in a separate object. The task 
of reporting metrics (in ccount) follows that of counting and classifying lines, and hence 
it is best to use different classes for these to separate responsibilities. 

If the list data type were already identified, the direct invocation metric would be the 
fastest and easiest to use to help determine objects. The shared parameters metric 
provides the best breakup of the objects; it comes closer than any other metric in 
identifying the list data type. 

 
Figure 4. Class diagram for object-oriented ccount application. 
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Based on the above observations and using the candidate objects as references, we chose 
the following classes for coding the object oriented version of ccount. The list data type is 
identified and encapsulated in its own class. The functions main, Error, and 
Report_Metrics were each placed in their own class. Figure 4 gives a class diagram of the 
application. 
Class::CError 
    Error() 
Class::CCount 
    main() 
Class::CReport 
    Report_Metric() 
Class::CCounter 
    Count_Lines() 
    private: 
        char *ch_ptr 
        char identifier[MAX_IDENT+1] 
        char function_name[MAX_IDENT+1] 
        char_class charClass[128] 
        Classify_Line() 
        Start_Tokenizer() 
        Get_Token() 
        Find_Function_Name() 
Class::CParams 
    Get_Parameters() 
    private: 
        short is_tabbed 
        char *delimiter 
        char **files 
        Check_Options() 
        Clean_Command_Line() 
Class::CList 
    Is_Empty_List() 
    Create_List() 
    Append_Element() 
    Delete_Element() 
    private: 
        CElement *list 
        Create_Node() 
        Destroy_Node() 

4.6   Coding 
For coding in C++ the following guidelines were followed. 

• Rather than using malloc and realloc functions to allocate memory, new was used. 

• Rather than using #define, const was used. 
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• Some variables had to be renamed to adhere to C++ naming convention. 

Otherwise, an effort was made to keep the function names the same and the algorithms 
the same. Due to the similar structure and syntax of the C and C++ languages, it was 
possible at times use the C functions with few changes. 
The parameters extracted from the command line were placed as private variables in the 
class CParams and were accessed using public access get methods. The list was made a 
private variable in the CList class; only the methods in the CList class modified the list. 

The global (file scope) variables accessed by the functions Get_Token, Start_Tokenizer, 
and Find_Function_Name were made private variables of the class CCounter. 

To ensure that the code developed in C++ gave the same result as the C version, the 19 
regression tests developed for C code in (Frakes, Fox et al. 1991) were utilized. 
Abnormal inputs were provided to check if the code is able to handle them. And the 
output generated for the statistics of a valid C file was verified to ensure that it was 
accurate. The C++ version was found to perform satisfactorily. 
Time taken for the coding of ccount in C++ was 24 hours. 

4.7   Process variables captured 
The times taken for each step are shown in Table 8. The total time taken for the process 
was 93 hours. Though we did not record the times it took to calculate each metric in 
identify objects step, we estimate that we did not spend more than six hours calculating 
the direct invocation metric and the shared parameter metric—the two metrics that 
seemed to give the best results.  

 
Step Time taken 

Create stop list 1 hour 
Create flow graph 1 hour 

Dependency list 2 hours 
Identify objects 48 hours 

Domain expert analysis 16 hours 
Coding 23 hours 

Total 93 hours 

Table 8. Process Variables 

The following data was captured for the ANSI C version and C++ version of ccount.  

Statistics for the C version: 

• Number of non-commentary lines of code : 749  

• Number of files : 7 

• Numbers of Functions : 17 
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Statistics for the C++ version: 

• Number of objects : 6 

• Number of real objects : 4 

• Number of utility objects : 2 

• Real objects with one function : 1 

• Number of non-commentary lines of code : 679 

5   Comparison with Ad Hoc Reengineering effort 
This section compares our method with an ad hoc reengineering effort conducted on the 
same program by a professional programmer. 

5.1  Ad hoc reengineering effort 
In the ad hoc method, ccount was reengineered to C++ using standard reusable 
components and a singleton design pattern to capture utility classes.  

When trying to determine how to reengineering the ccount program, the programmer 
considered several possibilities. A very simple approach would have been to take the 
modules or functions in the existing language and wrap them in modules or functions 
from the other language. This ensures that the resulting product is in the target language 
while not changing the functionality and the results by much. This approach is not 
optimal since, even though the conversion is complete, the new product does not use all 
the benefits and features of the new language. This is especially true when the source 
language is C and the target language is C++. Since C++ is backwards compatible to C, a 
very simple conversion would be to change the extensions on the files to .cpp and change 
printf’s to cout’s and be done. But, the resulting product would still be C in C++ clothing. 

Another option is to start from first principles. This involves looking at the problem 
statement, identifying the objects that stand out in the problem, and designing and 
developing the product from the ground up. The process involves defining attributes and 
methods for the various objects and creating classes for these objects. This option 
produces better code with most utilization of the features of the destination language than 
the first option. Also, since this design is from the ground up, one can take advantage of 
various optimizations from the beginning and support quality and maintainability from 
the start. This approach, however, is poor reuse because it requires a from-scratch 
development effort. This approach takes much longer for the conversion. 
In the ad hoc method, the programmer started from first principles in identifying objects 
and, once the objects were identified, the existing functions were remapped into methods 
that were appropriate for those objects. By doing so, he eliminated some functions, added 
new ones, and replaced existing ones with those from the standard C++ libraries. 
Sometime he replaced the functions with simpler ones that took advantage of the progress 
made in software platforms, and the portability of code that comes with using ANSI 
standards. 

Since the programmer decided to use the existing functionality and not rewrite from the 
ground up, he was left with some functions that did not belong to any of the objects he 
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identified. Some of these needed to be global since they maintained state information 
within the function between calls. These functions were packaged into a utility class 
using the singleton design pattern (Gamma, Helm et al. 1994) to achieve a single instance 
of the object. In addition, due to time constraints, he left the parsing algorithm used for 
the classification of a line the same as it was in the C version. 
From the statement of the problem and first principles, the programmer identified three 
distinct objects: 
 

• File – An object that needs to be analyzed, and one in which CSL (comment 
source lines), NCSL (non-comment source lines), and the ratio of CSL to NCSL 
must be determined. At least one file must be analyzed during any invocation. 

• Func – An object at the lowest granularity that needs to be analyzed and whose 
metric must be reported. Every function belongs to one file, and a file can contain 
one or more functions. Code external to a C function is treated as belonging to a 
function named external. 

• Line – An object that needs to be classified as either external or belonging to a 
function. It may be a comment, non-comment, neither, or both. Every line belongs 
to only one function and a function has one or more lines. 

 
Figure 5. A UML class diagram of the code produced by the ad hoc method 

These objects have certain attributes, and the programmer found a very good match of C 
functions with methods of these objects, though with a few changes. In addition, there are 
other functions and modules such as error checking and reporting, and command-line 
parsing that are either external to these objects or are not confined to one object. Finally, 
the sturdier, more generic and more optimal list container from the C++ Standard 
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Template Library can safely replace the C code for linked-list generation, maintenance, 
and deletion. 

Figure 5 gives a UML class diagram of the reengineered code. The diagram represents all 
of the classes in the resulting code, but it omits some of the methods due to space 
constraints. Since the reengineering in this study was done by a professional programmer, 
this serves as a baseline for the repeatable method. 

5.2   Comparison of Results 
In this section we compare the ad hoc and repeatable method on several metrics. First we 
compared the two methods in terms of regression testing. As can be seen in Figure 6, the 
repeatable method passed more of the ANSI C version regression tests, 11 tests passed, 
than did the ad hoc method, which passed eight. One key difference between the two 
methods is in total code size (commentary code + source code). As summarized in Figure 
7, the ad hoc method produced 2,481 lines of code, an increase of 61% over the C 
version. The repeatable method, on the other hand, was virtually the same as the C 
version producing 1,547 lines of code. As can be seen in Figure 8, the execution speed 
follows a similar pattern, with a small increase in execution speed for the repeatable 
method, and a much larger one for the ad hoc method. The differences in execution speed 
may be partially caused by the increase in code size. 

 
Figure 6. Number of regression tests passed by the original procedural code, the OO 
code developed using the ad hoc method, and the OO code developed using the 
repeatable method. 
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Figure 7. Difference in code sizes of the original procedural code, the OO code 
developed using the ad hoc method, and the OO code developed using the 
repeatable method. 

 
Figure 8. Difference in execution speed of the original procedural code, the OO code 
developed using the ad hoc method, and the OO code developed using the 
repeatable method. 

The increase in code size was also reflected in numbers of methods. The ad hoc method 
produced 59 methods vs. 20 for the repeatable method. The ad hoc method produced four 
custom classes and reused the List class from the C++ standard template library. The 
repeatable method produced five custom classes. The average number of methods per 
class was therefore 14.75 for the ad hoc method and four for the repeatable method.  
Of the 59 methods in the ad hoc method, 49 of them were public and 10 were private. 
The programmer using the ad hoc method included a large number of accessor methods 
in his code (27 in total), so this increase may in part be due to his design decision to make 
heavy use of accessor methods. Of the 20 methods produced in the repeatable method, 12 
were public and 8 were private. This is much closer to the 16 functions in the procedural 
code. The repeatable code had 5 accessor methods, while the procedural code had 2. The 
ad hoc method also had an equal or greater number of I/O and read/write methods than 
the repeatable method. The ad hoc method produced 2 I/O methods and 23 read/write 
methods, while the repeatable method also produced 2 I/O methods, but produced only 
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17 read/write methods. The original code contained 3 I/O methods and 12 read/write 
methods. The number of I/O and read/write methods is suggested as a predictor of good 
reuse components in (Selby, 1989). The spider graph in Figure 9 gives an overview of 
these method numbers. 

 
Figure 9. Spider graph comparison of metrics related to numbers of methods in 
code generated using the ad hoc and repeatable method. 

5.2.1   Evaluation using object-oriented metrics 
We evaluated the ad hoc and repeatable versions of the code using object-oriented 
metrics found in (Chidamber and Kemerer 1994). The metrics were weighted methods 
per class (WMC), coupling between object classes (CBO), response for a class (RFC), 
and lack of cohesion in methods (LCOM). The other metrics associated with this set, 
depth of inheritance tree (DIT) and number of children (NOC), were not used since 
neither method produced code with inheritance. The object-oriented metrics are designed 
to work on a per class basis. We report them here for each class and also give the average 
over all classes in each system. Interpreting these metrics is not always straightforward, 
though extreme numbers indicate a possible need to redesign the class (Chidamber and 
Kemerer 1994). There is also some indication that higher numbers can lead to more 
problems (Chidamber, Darcy et al. 1998). 
The weighted-methods-per-class metric gives the number of methods in each class. 
Weighting certain methods higher than others can change this number. For example, one 
might decide to give a lower weight to accessor methods or private methods. We have 
given equal weight to all methods since we have already reported numbers of accessor 
and private methods. Table 9 gives the weighted methods per class, which in this case is 
the same as the number of methods per class. The methods per class in the code produced 
with the ad hoc method are almost always higher than those in the code produced with 
the repeatable method. 



 25 

 

Ad hoc method Repeatable method 
Class WMC Class WMC 
Cfile 19 CCounter 6 
Cfunc 15 CError 1 
Cline 21 CList 6 
Util 5 CParams 6 
  CReport 1 
Mean 15 Mean 4 
Median 17 Median 6 
Range 16 Range 5 

Table 9.  Weighted methods per class (WMC) for the ad hoc and repeatable 
methods.  

For the coupling-between-object-classes metric, a class is considered coupled to another 
class if it uses attributes or methods from the other class, or vice versa. Therefore, if class 
A is coupled to class B, then class B must be coupled to class A. Note that the coupling 
metrics used in the repeatable method were based on many different forms of coupling. 
In this study both the ad hoc method and repeatable method produced code in which all 
the attributes were private, so coupling occurs if one class uses the methods of another. 
Table 10 gives the CBO metrics for each class produced under the different methods. The 
numbers for the repeatable method are slightly higher. 
 

Ad hoc method Repeatable method 
Class CBO Class CBO 
Cfile 3 CCounter 2 
Cfunc 1 CError 4 
Cline 2 CList 3 
Util 1 CParams 1 
  CReport 2 
Mean 1.75 Mean 2.4 
Median 1.5 Median 2 
Range 2 Range 3 

Table 10.  Coupling between object classes (CBO) for the ad hoc and repeatable 
methods.  

The response for a class is the number of methods in a class plus the number of methods 
it calls from other classes. For example, if class A has one method that invokes two other 
methods, both from different classes, then the response for class A is three. All methods 
are counted only once. Table 11 gives the response for each class produced by the ad hoc 
and repeatable methods. The RFC values for the ad hoc method are decidedly higher than 
those for the repeatable method. The ad hoc mean is more than triple that of the 
repeatable method, and the range is more than double. 
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Ad hoc method Repeatable method 
Class RFC Class RFC 
Cfile 28 CCounter 9 
Cfunc 17 CError 1 
Cline 23 CList 7 
Util 6 CParams 7 
  CReport 3 
Mean 18.5 Mean 5.4 
Median 20 Median 7 
Range 22 Range 8 

Table 11.  Response for a class (RFC) for the ad hoc and repeatable methods.  

The lack-of-cohesion-in-methods metric tries to measure the cohesiveness of a class. The 
higher this number, the less cohesive a class is. The most cohesive classes have an 
LCOM value of zero. The LCOM value is based on the notion that in a cohesive class, 
most methods will use most of the attributes of the class. If most methods do not use 
many attributes, the lack of cohesion is higher. The exact formula is LCOM = max(n � m 
– 2 (A1 + A2 + … + Am)) where n is the number of attributes in the class, m is the 
number of methods in the class, and Ai is the number of attributes used by method i. 
Table 12 give the LCOM values for each class produced by each of the methods. As 
shown in the table, most of the LCOM values for the classes in the ad hoc method are 
significantly higher than the values for the classes in the repeatable method. The value for 
the Cline class is particularly extreme. 

 

Ad hoc method Repeatable method 
Class LOCM Class LOCM 
Cfile 40 CCounter 8 
Cfunc 17 CError 0 
Cline 138 CList 0 
Util 4 CParams 14 
  CReport 0 
Mean 49.75 Mean 4.4 
Median 28.5 Median 0 
Range 134 Range 14 

Table 12.  Lack of cohesion in methods (LCOM) for the ad hoc and repeatable 
methods.  

Figure 10 summarizes the object-oriented metrics using a spider graph. The average 
metric values for the ad hoc method are higher than those for the repeatable method for 
all metrics except the CBO metric.  
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Figure 10. Spider graph summarizing the object-oriented metrics on a logarithmic 
scale 

 
Metric ANSI C Ad hoc Repeatable See 
Regression tests 
passed 

12/17 8/17 11/17 Figure 5 

CSL + NCSL 1542 2481 1547 Figure 6 
Execution speed 0.0582 sec 0.175 sec 0.0816 sec Figure 7 
Public methods N/A 49 12 Figure 8 
Private methods N/A 10 8 Figure 8 
Accessor methods 2 27 5 Figure 8 
Read/Write methods 12 23 17 Figure 8 
Input/Output 
methods 

3 2 2 Figure 8 

Avg. WMC N/A 15 4 Table 3 
Avg. CBO N/A 1.75 2.4 Table 4 
Avg. RFC N/A 18.5 5.4 Table 5 
Avg. LOCM N/A 49.75 4.4 Table 6 

Table 13.  Summary of evaluation metrics used for comparison.  

6   Conclusion 

6.1   Revised method 
In Section 2 we gave an outline of the steps involved in the Pole method (Pole 1991), 
which was the method that ours was originally based on. During the course of this study, 
we discovered that these steps tended to emphasize some tasks that we thought less 
important, and deemphasize some tasks that we thought more important. We feel that the 
following list gives a more accurate description of the process.  

1. The domain expert creates a function stop list. A stop list contains functions 
identified by the domain expert as utility functions that do not perform tasks 
specific to the domain. 
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2. Summary data is collected. The summary data contains information for each 
function that is not in the stop list, such as the types and names of parameters, 
variables, and functions used in the given function. The summary data includes 
information that would be found in a call graph and in dependency and context 
lists. 

3. Metrics are calculated. Different coupling metrics describe different relationships 
between functions, such as how many times one function invokes another or how 
many parameters are shared by the functions. In our study we used eight different 
coupling metrics and evaluated each one individually for its effectiveness in 
identifying objects. 

4. Identify candidate objects. The software engineer determines a threshold for each 
metric. If the metric for two functions is above the threshold, those functions are 
candidates to appear as methods in the same class.  

5. Domain expert chooses objects. The domain expert examines candidate objects 
and determines whether they are reasonable. Variables common to two or more 
functions are examined for their appropriateness as object attributes. Leftover 
functions including the functions in the stop list can be converted into individual 
objects or packaged as utility objects. 

This first step is unchanged from the list in Section 2. The second step in this list is a 
combination of steps 2, 3, and the first part of step 4 from the original list. The third and 
forth steps here are included in step 4 of the original list. Step 5 is unchanged.  

6.2   Summary of results 
This study examined two methods for reengineering procedural software systems to 
object-oriented systems. Our hypothesis was that it is possible to support this process 
with a repeatable method. We empirically evaluated our method to determine its utility, 
and found that the repeatable method produced more compact and efficient code, and 
passed more regression tests than did the ad hoc method. Analysis of object-oriented 
metrics indicated both simpler code and less variability among classes. Particularly 
striking was the order of magnitude difference between the average cohesion metric 
(LCOM) for the ad hoc and repeatable methods. Table 7 summarizes our findings. 

Our analysis raises an interesting issue regarding the use of the repeatable methods. In 
general, we expect more variability in the ad hoc method, and we observed this. 
Programmers using the ad hoc method are redesigning the code from scratch, so their 
different design philosophies will be more apparent than they would be if using the 
repeatable method. Since the goal of the repeatable method is to provide the programmer 
with a suggested set of methods for each class, different programmers are more likely to 
produce similar code. 
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