
 1

An Empirical Study of a Repeatable Method for
Reengineering Procedural Software Systems to Object-

Oriented Systems

William B. Frakes and Gregory Kulczycki
Computer Science Department, Virginia Tech, Falls Church, VA, 22043

Abstract. This paper describes a repeatable method for reengineering a procedural
system to an object-oriented system. The method uses coupling metrics to assist a domain
expert in identifying candidate objects. An application of the method to a simple program
is given, and the effectiveness of the various coupling metrics are discussed. We perform
a detailed comparison of our repeatable method with an ad hoc, manual reengineering
effort based on the same procedural program. The repeatable method was found to be
effective for identifying objects. It produced code that was much smaller, more efficient,
and passed more regression tests than the ad hoc method. Analysis of object-oriented
metrics indicated both simpler code and less variability among classes for the repeatable
method.
Keywords. Reengineering, coupling metrics

1 Introduction
The purpose of our research is to define a method and tools to assist software developers
in the process of converting code in a procedural language, such a C, to an object-
oriented language such as C++ or Java. Our hypothesis is that it is possible to support this
process with a simple repeatable method that yields higher quality code than an ad hoc
reengineering effort.

The history of programming and software engineering demonstrates the continual
evolution towards larger grained programming constructs and more human focused
languages (Frakes and Kang 2005). One aspect of this evolution is the development of
more reusable systems based on object-oriented design and programming. One way of
achieving this is by reengineering existing procedure-based systems to object-oriented
systems. Companies sometimes use the migration from C to C++ or Java, for example, as
opportunities for better reuse (Dunn and Knight 1991; Pole 1991; Lanza 2003). In
addition to reengineering, identifying objects in procedural programs can enhance
understanding of the system design and domain constructs, make debugging easier, and
simplify program maintenance (Liu and Wilde 1990; McFall and Sleith 1993; Livadas
and Johnson 1994).

Many companies have large inventories of legacy code written in procedural languages.
When these companies migrate to new object-oriented architectures, they do not want to
start from scratch. Therefore, a need exists for a methodology that can analyze existing
procedural code and identify related functions and data that can be encapsulated into
reusable objects in the application domain. There have been many studies of the
procedural to object-oriented reengineering process (Pole 1991; Newcomb and Kotik
1995; Achee and Carver 1997; Fanta and Rajlich 1998; Valasareddi and Carver 1998;

 2

Cimitile, Lucia et al. 1999; Siff and Reps 1999; Abd-El-Hafiz 2000; Canfora, Cimitile et
al. 2001; Gui 2003; Lanza 2003).

Our methodology differs from others both in its simplicity, and its emphasis on empirical
analysis and evaluation. Our method analyzes the procedural code and aids the
programmer in determining how to create classes from groups of functions (Frakes,
Kulczycki et al. 2006; Frakes, Kulczycki et al. 2008). The method uses various coupling
metrics to determine how strongly any two functions are related, and therefore, whether
they belong in the same class in an object-oriented design. The method uses the premise
that program elements that exhibit certain kinds of coupling can be grouped together to
form classes. We evaluated eight different coupling metrics of varying degrees of
complexity. We also compared our method with an ad hoc reengineering effort. Both the
repeatable and ad hoc methods were used to reengineer the ccount metrics tool, written in
C, to object-oriented programs in C++. For the ad hoc method, a professional
programmer manually reengineered the procedural code (Suryanarayanan and Frakes
2003). The programmer inspected the C code and designed the object-oriented code
based on principles that he considered appropriate.

Section 2 of this paper describes the reengineering methodology that our study is based
on, and Section 3 details the coupling metrics we used to help identify objects. We
present an application of our method in Section 4 to a simple procedural program, and we
use it to analyze the effectiveness of the various coupling metrics given in section 3. In
Section 5 we compare the results of our method with an ad hoc reengineering effort.

2 Reengineering methodology
The method evaluated in this study proposes steps to be taken in reengineering a
procedural system to an object-oriented system. The method delivers reusable objects
from existing legacy code. It is based on the premise that program elements that exhibit
certain kinds of coupling can be grouped together to form objects. The original steps to
be taken in the reengineering process are borrowed from a method suggested by Pole
(Pole 1991). They are as follows:

1. The domain expert creates a function stop list. A stop list contains functions
identified by the domain expert as utility functions that do not perform tasks
specific to the domain.

2. A call graph is generated. A tool or manual scanning of the code base is used to
generate a call graph that shows the flow of control in the legacy code.

3. Dependency and context lists are created. A dependency list identifies all the
functions invoked from a given function. A context list does the reverse—it
identifies the functions that invoke or use a given function.

4. Objects are identified. In this step the metrics are calculated and the potential
objects are identified. This step turned out to be the most involved step in the
process. We discuss later the details of this process.

5. Domain expert chooses objects. The domain expert examines candidate objects
and determines whether they are reasonable. Variables common to two or more
functions are examined for their appropriateness as object attributes. Leftover

 3

functions including the functions in the stop list can be converted into individual
objects or packaged as utility objects.

In the course of this research, we found that the 4th step (identifying objects) took a
disproportionately longer time than the others. We address this in the section on future
work and give a revised list of steps that is more in line with what we experienced.

2.1 Comparison with other methodologies
There have been many methods proposed for identifying objects in procedural programs.
A brief but good summary can be found in (Canfora, Cimitile et al. 2001). Table 1
presents a comparison of some selected methods. It compares the approach each method
takes to object identification, how each method is evaluated, and the extent to which each
method is automated.

Newcomb and Kotik proposed a transformation programming system based on the
Software Refinery tool (Newcomb and Kotik 1995). The tool took code written in a
procedural language and transformed it to an abstract syntax tree. Based on an analysis of
the AST, functionally equivalent code was produced in an object-oriented language. The
system went beyond simple object identification and attempted to construct class
inheritance hierarchies. The tool was designed to look for opportunities where code could
be compressed and/or reused. In a successful transformation, the object-oriented code
was smaller and the number of total operations was reduced. The process was entirely
automated, though human assistance could be used to improve the results.

Siff and Reps proposed a technique for identifying modules in procedural programs using
concept analysis (Siff and Reps 1999). When reengineering a C program to a C++
program using their method, “the C program’s struct types are the starting point for the
C++ program’s classes.” (p. 750) They demonstrated their technique on a procedural
program that included both stack and queue data structures. The groupings suggested by
the concept analysis performed well in identifying the functions that belonged to the two
data structures. The authors emphasize that a software developer can control the level of
granularity of the groupings given by the concept analysis.

Abd-El-Hafiz also focused on object identification in his research, but used cluster
analysis for the purpose (Abd-El-Hafiz 2000). He demonstrated his work on two
programs, one of them the same ccount program that we use for our example later in the
paper. He evaluated the effectiveness of his method by considering whether the proposed
groupings corresponded to obvious data structures, and how well they corresponded to
the modules in the procedural system.

Canfora et al. reengineered a complex system consisting of around 200,000 lines of code
(Canfora, Cimitile et al. 2001). They looked at various object identification
methodologies that were available at the time, including concept analysis and cluster
analysis. They found that no one technique worked best in every situation. Their
reengineering effort ended up using a variety of techniques, all overseen by a domain
expert software engineer who chose the grouping tools and made the final decisions
about how to group objects.

 4

Approach Basis for object
identification

Evaluation Automation

Newcomb and
Kotik

Software Refinery (TM)
transformation
programming system

Functional
correctness; increase
in level of reuse

Achieves a “very
high level of
automation” in
transforming code

Siff and Reps Use the data in
procedural programs,
and apply concept
analysis to find objects

Appropriate
partitioning of
functions in multiple
data structures

Partitioning process
is automated;
granularity of results
can be dynamically
modified

Abd-El-Hafiz Use a correlation matrix
between functions and
attributes, and apply
clustering neural
networks to find objects

Correct identification
of data structures;
Conformance of
clusters to modules
in original system

Partitioning process
is automated; results
should be good
enough to avoid the
need for a domain
expert

Canfora et al. A domain expert uses a
variety of existing
approaches to object
identification, and
tailors the results based
on his or her knowledge
of the system

In a large
reengineering effort,
the authors found
that no single
approach was best in
all cases

Object identification
was automated
using various
systems; domain
expert made the
final decision
regarding groupings

Frakes and
Kulczycki

Function pairs that are
highly coupled are
candidates for being
methods in the same
object

Coupling metrics are
evaluated by domain
engineers; a
reengineered
program using the
method is compared
to a baseline (ad hoc)
reengineering effort

Partitioning process
can be automated,
but simpler metrics
can be computed by
hand; domain expert
makes the final
design decisions

Table 1. A comparison of selected approaches to object identification

3 Coupling Metrics
This section describes the metrics that we used in our methodology. Each metric
describes a distinct relationship between any two functions in the legacy system. We call
them coupling metrics because they are based on the various forms of module coupling,
such as those given in (Frakes, Fox et al. 1991), and because they indicate the
dependency and the amount of communication that takes place between functions.
The metrics can be divided into three broad categories based on the kind of coupling that
motivated them.

 5

1. Invocation metrics. These metrics are based on routine call coupling as described
in (Pressman 2005). They rank functions based on how often one function
invokes another.

2. Shared parameter metrics. This category currently contains only one metric—
the shared parameter metric. It is based on data element coupling as described in
(Frakes, Fox et al. 1991), which exists when data is passed from one function to
another through a disciplined interface such as a parameter list.

3. Shared variable metrics. These metrics are based on data definition coupling as
defined in (Frakes, Fox et al. 1991). Data definition coupling occurs when
functions manipulate data of the same type.

Our goal is to use these metrics to determine if any two functions in the legacy system
belong together in the same class when we move to an object-oriented system. We looked
at many metrics because we did not know which ones would be the most effective in
identifying objects. We discuss the effectiveness of the metrics we used and the prospect
of finding additional metrics in Section 4 of this paper.
The following subsections present eight different metrics—three invocation metrics, one
shared parameter metric, and four shared variable metrics. Table 2 gives the definitions
of several functions that are used in the definitions of these metrics. With the exception of
the source function, these helper functions are self-explanatory. The source function
gives the set of variable declarations associated with a particular variable, tracing back
through calls if the variable is a formal parameter. We discuss the source function in
further detail when we look at the shared variable metric.

Function Definition

invocs(f1, f2) Number of times that function f2 is invoked in the body of f1

params(f0)
{ vt,n | vt,n is a variable of type t with name n that appears in the
 parameter list of f0 }

vars(f0) { vt,n | variable vt,n of type t with name n appears in the body of f0 }

source(v, f0) { vdec | variable v appears in f0 and
 vdec is a declaration of variable v, or
 v is a formal parameter in f0, and vdec ∈ source(v1, f1) where
 f1 invokes f0, and vdec is the actual parameter in that
 invocation that corresponds to v }

count(v, f0) Number of times that variable v appears in the body of f0

Table 2. Functions used in the definitions of the eight coupling metrics.

 6

3.1 Invocation metrics
When a function f1 calls another function f2, it indicates that they perform related tasks
and suggests that those functions should be considered for inclusion in the same object.
When a method from one class invokes a method from another class, those classes are
related by routine call coupling (Pressman 2005). As the name implies, this form of
coupling is routine in object-oriented programs. Nevertheless, when a function f1 calls
another function f2 in a procedural program, it may indicate that f2 can translate to a
private method in same class that contains f1. Therefore, these metrics may be considered
helpful in identifying objects.

Direct invocation metric. This metric identifies the number of times that a function f1
calls another function f2. The metric is defined simply as

N(f1, f2) = invocs(f1, f2).
Indirect invocation metric. This metric identifies the number of times that a function f1
indirectly calls a function f2 by way of a third function fmid. It is simply the sum of the
direct invocation metrics for f1 and fmid, and fmid and f2. However, if either of the direct
invocation metrics is zero, then no indirect invocation takes place, so the value of the
indirect invocation metric is zero. The metric is defined in terms of the direct invocation
metric as

Nind(f1, f2) = N(f1, fmid) + N(fmid, f2) where N(f1, fmid) > 0 and N(f2, fmid) > 0
Recursive invocation metric. This metric identifies the number of times a function f1
calls function f2 and f2 calls back to f1. The value of the metric is the sum of the direct
invocations from f1 to f2 and f2 to f1. Like the indirect invocation metric, the value of this
metric is zero if no recursion exists. The metric is defined as

Nrec(f1, f2) = N(f1, f2) + N(f2, f1) where N(f1, f2) > 0 and N(f2, f1) > 0

3.2 Shared parameter metrics
Data element coupling occurs when modules access shared data that is passed in through
a parameter list. If a client passes the same stack to functions in modules M1 and M2, then
those modules exhibit data element coupling.
Shared parameter metric. This metric identifies the formal parameters that are common
between two functions. It does this by counting the number of formal parameters that
have the same type and same name. The metric is defined as

P(f1, f2) = | params(f1) ∩ params(f2) |

3.3 Shared variable metrics
Shared variable metrics look at all variables—including parameters, global variables, and
local variables—that are shared by functions. These metrics are based on data definition
coupling (Frakes, Fox et al. 1991). Data definition coupling occurs when modules
manipulate data of the same type. For example, if two modules modify a data structure of
type stack, they exhibit data definition coupling.
There are two different kinds of shared variable metrics. The first, more sophisticated,
metric considers variables to be shared only if they can be traced to a common

 7

declaration. For example, suppose variable x is declared in function f0, which passes it to
f1 and f2. Furthermore, suppose f2 obtains x through a formal parameter y, which it then
passes to f3. Then functions f0, f1, f2, and f3 are all related, because they all use or
manipulate a value that originated with a variable declared in f0 (see Figure 1).

Figure 1. The functions all use a variable that can be traced to the same source.

Shared variable metric. This metric identifies variables in two functions that share a
common source. The metric is defined as

V(f1, f2) = | { v | source(v, f1) ∩ source(v, f2) | ≠ ∅ } |

The function source(v, f1) gives the set of sources (variable declarations) for variable v in
f1. If v is not a formal parameter in f1, then v will have a unique source. However, if v is a
formal parameter, then v’s source set includes the elements in the source sets of all
corresponding actual parameters. Therefore, the size of v’s source set may be greater than
one.
The simpler version of the shared variable metric considers functions to be related if they
share variables with the same type and the same name.
Shared type-name variable metric. This metric identifies all variables in two functions
that have a common type and name. The metric is defined as

V′(f1, f2) = | vars(f1) ∩ vars(f2) |

We also include a variation for each of these metrics in our analysis. The metrics above
count declarations of variables rather than uses. For example, if the only variable shared
by two functions was the global stack s, the shared variable metric for those functions
would be one. Even if s appears three times in the body of the first function and four
times in the body of the second function, the value of the metric is still one. The metrics
below count the static occurrences (the tokens rather than types) of common variables.

Shared variable tokens metric. This metric counts the static occurrences of all variables
in two functions that share a common source. The metric is defined in terms of the shared
variable metric as

Vtokens(f1, f2) = ∑ count(v, f1) + count(v, f2) where v ∈ V(f1, f2)

Shared type-name variable tokens metric. This metric counts the static occurrences of
all formal parameters, global variables, and local variables that are common between two
functions. The metric is defined as

V′tokens(f1, f2) = ∑ count(v, f1) + count(v, f2) where v ∈ V′(f1, f2)

 8

Table 3 summarizes the metrics and their definitions.

Name Notation Definition

Direct Invocation Metric N(f1, f2) invocs(f1, f2)

Recursive Invocation
Metric Nrec(f1, f2)

N(f1, f2) + N(f2, f1) where

| N(f1, fmid) | > 0 and | N(f2, fmid) | > 0

Indirect Invocation Metric Nind(f1, f2)
N(f1, fmid) + N(fmid, f2) where

| N(f1, fmid) | > 0 and | N(f2, fmid) | > 0

Shared Parameter Metric P(f1, f2) | params(f1) ∩ params(f2) |

Shared Variable Metric V(f1, f2) | { v | history(v, f1) ∩ history(v, f2) | ≠ ∅ } |

∑ count(v, f1) + count(v, f2)
Shared Variable Tokens
Metric Vtokens(f1, f2)

v ∈ V(f1, f2)

Shared Type-Name
Variable Metric V′(f1, f2) | vars(f1) ∩ vars(f2) |

∑ count(v, f1) + count(v, f2)
Shared Type-Name
Variable Tokens Metric V′tokens(f1, f2)

v ∈ V′(f1, f2)

Table 3. Notations and definitions for the eight coupling metrics used in the study.

4 Reengineering ccount
The procedural system analyzed in the study was ccount, a metrics tools implemented in
C that reports counts of commentary and non-commentary source lines and comment-to-
code ratios (Frakes, Fox et al. 1991). The ccount tool was initially written in K & R C
and later converted to ANSI C. For the purpose of this study the ANSI C version was
used.

The statistics collected for the ccount tool including the main function are:

• Number of non-commentary lines of code: 749

• Number of files: 7

• Number of functions: 17

The ccount metric tool was used because it is tractable for a small case study, but non-
trivial, so that the case study is still relevant.

This section shows how the method was applied to ccount. Throughout the process of
evaluating the proposed method, the following metrics were captured:

 9

• The time taken at each step of the process.

• The number of domain specific objects and utility objects created.

• The number of functions and lines of codes in the legacy system.

The authors acted as the domain experts.

4.1 Domain expert creates function stop list.
For ccount the functions identified to be in the stop list were string manipulation and file
manipulation functions that are provided by the standard C libraries. Since the system
was relatively small, rather than providing the list as a starting point, we analyzed the
output from the next step to help us come up with the functions to be placed in the stop
list. The time taken for this step was 1 hour.

4.2 A call graph is generated
The cflow tool was used to identify the flow of control (call structure) of ccount. The
output from cflow is in a text format, which we then converted to the graphical
representation given in Figure 2. The cflow tool provides options to generate output in
both a top-down and bottom-up manner. The graphical representation of the bottom-up
output would simply be the call graph in Figure 2 with the arrows reversed. The time
taken for this step was 2 hours.

Figure 2. Call graph for ccount tool.

4.3 Dependency and context lists are created.
Using the call graph created in the previous step, the dependency list and the context list
were created. The dependency list indicates the functions that are invoked by a given
function. For example, the function Classify_Lines uses functions Start_Tokenizer,
Get_Token, and Find_Function_Name. The context list indicates the functions that
invoke a given function. For example, Create_Node is used by Append_Element. In this

 10

example, the only function invoked by multiple functions is Error, which is used by seven
other functions. The time taken for this step was 2 hours.

4.4 Objects are identified
This step was by far the most involved and the most time-consuming. Therefore, to make
the presentation clearer we have divided it into three sub-steps: collection of summary
data, calculation of metrics, and identification of candidate objects. The total time taken
for this step was 48 hours.

4.4.1 Summary data is collected
To determine the various metrics, we first identified the variables and functions accessed
by each individual function. The collection of the required data for each function was
done manually. Lack of a tool for collecting the data made the process time consuming.

For each function the following data was collected.

• The parameters passed to it

• The local variables defined and accessed

• The global variables accessed

• The functions invoked along with the parameters passed to those functions

• The data type returned by the function

For each variable (parameters, local variables, and global variables) the following was
captured.

• Its name

• Its data type

• Its scope

• The number of static accesses made to it

Shared variables were identified by looking at each file to determine global variables or
local variables manipulated by a function. Ccount did not have any global variables, but it
did have variables with file scope that were manipulated by more than one function in
that file.

Summary Data Collection Table

Check_Options (params.c)

Parameters char *options 2

 char *optionargs 1

Global variables 0

Local variables char *ch_ptr 8

 11

Functions invoked Error 2

 Clean_Command_Line (params.c)

Parameters char *options 2

 char *optionargs 2

 char **argv[] 9

 int *argc 6

Global variables 0

Local variables char **new_argv 24

 char **files 9

 char *ch_ptr 11

 int new_argc 18

 int num_files 6

 int arg_index 16

 int file_index 4

Functions invoked Check_Options(options, optionargs) 1

 Error(…) 8

Table 4. Summary data for functions Check_Options and Clean_Command_Line.

An example of the information collected in this step is given in Table 4. From the table
we can tell, for example, that the function Check_Options has two parameters, options
and optionargs. The parameter options is accessed twice in the body of the function, and
optionargs is accessed once. The function also accesses the locally defined variable
ch_ptr eight times, and it invokes the function Error twice.

4.4.2 Metrics are calculated
Once the summary data for each function was collected, the coupling metrics were
calculated for each pair of functions, provided that neither function is in the stop list. For
example, Table 5 gives the data invocation metric calculated for the ccount functions.
Function pairs that had a metric value of zero were not included in the table.

 12

Table 5. Non-zero direct invocation metrics for ccount.

Most of the metrics can be calculated simply by inspecting the summary data for the two
functions involved in the metric. The exceptions are the indirect invocation metric, the
shared variables metric, and the shared variable tokens metric. Table 6 shows each of the
eight metrics in which the first function (f1) is Clean_Command_Line and the second
function (f2) is Check_Options. The following paragraphs indicate how to calculate each
of these metrics.

First function (f1) Second function (f2) N(f1, f2)

Main Get_Parameters 1

Main Count_Lines 1
Main Report_Metrics 1

Get_Parameters Clean_Command_Line 1
Get_Parameters Error 1

Count_Lines Create_List 1
Count_Lines Error 1

Count_Lines Classify_Line 1
Count_Lines Append_Element 3

Report_Metrics Error 2
Report_Metrics Is_Empty_List 1

Report_Metrics Delete_Element 1
Clean_Command_Line Check_Options 1

Clean_Command_Line Error 8
Classify_Line Start_Tokenizer 1

Classify_Line Get_Token 1
Classify_Line Find_Function_Name 1

Append_Element Create_Node 2
Delete_Element Destroy_Node 1

Check_Options Error 2
Get_Token Error 1

Create_Node Error 2

 13

N(f1, f2) 1

Nrec(f1, f2) 0
Nind(f1, f2) 0

P(f1, f2) 2
V(f1, f2) 2

Vtokens(f1, f2) 7

V′(f1, f2) 3

V′tokens(f1, f2) 26

Table 6. Metrics for f1 = Clean_Command_Line and f2 = Check_Options.

Invocation metrics. From Table 3 we see that Clean_Command_Line calls
Check_Options once, yielding a direct invocation metric of one. Since Check_Options
never calls Clean_Command_Line back, the recursive invocation metric is zero. In fact,
in this particular study all of the recursive invocation metrics turned out to be zero. The
indirect invocation metric requires slightly more work. Looking at Table 3, we see that
the only other function besides Check_Options that is called by Cleam_Command_Line
is the Error function, which is called eight times. If the Error function (whose record is
not shown in Table 3) had called Check_Options n times, then the indirect invocation
metric would have been 8 + n. Since the Error function never actually invokes
Check_Options, the indirect invocation metric is zero. Note that the direct and indirect
invocation metrics are not necessarily symmetric. For example, we do not—in general—
have Nind(f1, f2) = Nind(f2, f1). However, the recursive invocation metric is symmetric.
Shared parameter metrics. We can also tell directly from Table 3 that functions
Check_Options and Clean_Command_Line both have a parameter named options of type
char and a parameter named optionargs of type char. For this reason, the value of the
shared parameter metric is two. Note that, in this study, we ignored pointers when
determining types—so variables declared with char, char**, and char[] were all
considered to have the same type.
Shared variable metrics. To calculate the shared variables metric we must determine
which variables in Clean_Command_Line and Check_Options can potentially originate
from the same source. From Table 3 we see that there are only three variables in
Check_Options, so there are three candidates. The variable ch_ptr is declared in the body
of Check_Options, so the only way that Clean_Command_Line can share this variable is
if it is passed to Clean_Command_Line through some sequence of function calls.
However, a quick look at the flow graph (Figure 2) tells us that although
Clean_Command_Line calls Check_Options, there is no call path from Check_Options to
Clean_Command_Line. Therefore, even though Clean_Command_Line also has a
variable named ch_ptr of type char, they are not considered shared for the purposes of
this metric. On the other hand, both options and optionargs are formal parameters in
Check_Options, and since Clean_Command_Line calls Check_Options, we know that

 14

Check_Options must share its formal parameters with the actual parameters passed to it
by Clean_Command_Line. The fact that the actual parameters passed by
Clean_Command_Line also happen to be named options and optionargs is unrelated to
the calculation of this metric; the relevant fact is that the variables come from the same
source. Thus, the value for the shared variable metric is two, and the value for the shared
variable tokens metric is the sum of static occurrences for these variables in each
function: 3 in Check_Options + 4 in Clean_Command_Line = 7.
The shared type-name variables metric is significantly easier to calculate. Both functions
have variables with type-name combinations char/options, char/optionargs, and
char/ch_ptr. Therefore the value of this metric is three, and the value of the shared type-
name variable tokens metric is: 11 occurrences of these variables in Check_Options + 15
occurrences in Clean_Command_Line = 26.

4.4.3 Candidate objects are identified
Once the individual metrics have been are calculated, a threshold is determined for each
metric, and each metric is individually evaluated to come up with candidate objects. In
this study, the following guidelines were taken into consideration.

• In C++ the function main is not part of any object, therefore the coupling metrics
in relation to that function were not used.

• If the coupling metric for two functions was above or equal to the threshold value,
both were placed in the same object.

• If a function f1 has the same coupling metric with multiple functions in different
objects, then this is used as an indication that f1 should be placed in a separate
object as it might be a utility function.

The decision of which threshold to use was empirical to ensure that functions don’t
cluster in one object. In the case of the direct invocation metric, the vast majority of
function pairs had a metric value of zero, several functions had a value of one, and a few
functions had a value greater than one (see Figure 3). A threshold value of one was
chosen—a value of anything greater than one would have meant that too many functions
would be in classes by themselves.

 15

Figure 3. Distribution of values for the direct invocation metric.

Using the guidelines outlined above, the main function was placed in a class by itself, and
the Error function was identified as a utility function, so it was also placed in a separate
class. This led to the following partitioning of the functions into objects.

Object 1 Get_Parameters, Clean_Command_Line, Check_Options
Object 2 Count_Lines, Classify_Line, Start_Tokenizer, Get_Token,
 Find_Function_Name, Create_List, Append_Element, Create_Node
Object 3 Report_Metrics, Is_Empty_List, Delete_Element, Delete_Node

Object 4 Error
Object 5 Main

The process of determining a threshold and finding candidate objects was repeated for all
of the metrics, yielding the partitioning of functions in Table 7. The recursive invocation
metric is not included because recursive calls did not occur in the application.

Metric Candidate Objects
Get_Parameters, Clean_Command_Line, Check_Options
Count_Lines, Classify_Line, Start_Tokenizer, Get_Token,
Find_Function_Name, Create_List, Append_Element, Create_Node

Report_Metrics, Is_Empty_List, Delete_Element, Delete_Node

Direct
invocation

Error
Get_Parameters, Clean_Command_Line, Check_Options
Count_Lines, Classify_Line, Start_Tokenizer, Get_Token,
Find_Function_Name, Append_Element, Create_Node

Report_Metrics, Delete_Element, Delete_Node

Indirect
invocation

Error, Create_List, Is_Empty_List

 16

Get_Parameters, Clean_Command_Line, Check_Options
Count_Lines, Classify_Line, Start_Tokenizer, Report_Metrics, Error
Delete_Element, Append_Element, Create_Node, Is_Empty_List,
Create_List

Shared
parameters

Destroy_Node, Find_Function_Name, Get_Token
Get_Parameters, Clean_Command_Line, Check_Options
Count_Lines, Classify_Line, Start_Tokenizer, Get_Token,
Find_Function_Name, Append_Element, Create_Node

Report_Metrics, Delete_Element

Shared
variables

Error, Create_List, Is_Empty_List, Destroy_Node
Get_Parameters, Clean_Command_Line, Check_Options
Count_Lines, Classify_Line, Start_Tokenizer, Get_Token,
Find_Function_Name, Append_Element, Create_Node

Report_Metrics, Delete_Element, Destroy_Node

Shared
variable
tokens

Error, Create_List, Is_Empty_List
Get_Parameters, Clean_Command_Line, Check_Options
Count_Lines, Classify_Line, Start_Tokenizer, Get_Token,
Find_Function_Name

Report_Metrics, Create_Node, Append_Element, Delete_Element

Shared
type-name
variables

Error, Create_List, Is_Empty_List, Destroy_Node
Get_Parameters, Clean_Command_Line, Check_Options

Count_Lines, Classify_Line, Start_Tokenizer, Get_Token,
Find_Function_Name

Report_Metrics, Create_Node, Append_Element, Delete_Element

Shared
type-name
variable
tokens

Error, Create_List, Is_Empty_List, Destroy_Node

Table 7. Candidate objects for each of the coupling metrics.

4.5 Domain expert chooses objects
In this step the domain expert analyzed the objects for reasonableness. Each metric was
analyzed individually, and the results of this analysis are presented here. One of the
criteria used in the analysis was whether the partitions corresponded to the modules in the
C program, which exhibited good modular design in the first place. In particular, we were
always interested to see if the candidate objects for a given coupling metric successfully
identified the list data type. The time taken for this step was 16 hours.

The direct invocation metric provides a good breakup of the objects, but was unable to
satisfactorily identify the list data type. It groups the functions that relate to extracting

 17

parameters since those functions invoke each other. However, the list functions do not
necessarily invoke each other. The indirect invocation metric provides a breakup of
objects very similar to the direct invocation metric. And similarly, it is not able to
identify the list data type. This may indicate that these metrics will give similar results in
general. If so, then the direct invocation metric should be used since it is easier to
calculate.

The shared parameters metric is able to identify the list data type as it clusters all but one
function in the same object. It places the functions Error and Report_Metrics in the same
object as functions which classify lines. Since this metric only considers the parameter
list of functions it does not always separate functions that have separate responsibilities.

The calculation of the shared variable metrics in general took up a substantial amount of
time, but their results were not very different to the direct invocation metric. None of the
shared variable metrics were able to identify the list data type; they all tended to have the
functions related to the abstract data type either in the utility object or grouped with the
Report_Metrics function.
Most coupling metrics placed the function Report_Metrics in a separate object. The task
of reporting metrics (in ccount) follows that of counting and classifying lines, and hence
it is best to use different classes for these to separate responsibilities.

If the list data type were already identified, the direct invocation metric would be the
fastest and easiest to use to help determine objects. The shared parameters metric
provides the best breakup of the objects; it comes closer than any other metric in
identifying the list data type.

Figure 4. Class diagram for object-oriented ccount application.

 18

Based on the above observations and using the candidate objects as references, we chose
the following classes for coding the object oriented version of ccount. The list data type is
identified and encapsulated in its own class. The functions main, Error, and
Report_Metrics were each placed in their own class. Figure 4 gives a class diagram of the
application.
Class::CError
 Error()
Class::CCount
 main()
Class::CReport
 Report_Metric()
Class::CCounter
 Count_Lines()
 private:
 char *ch_ptr
 char identifier[MAX_IDENT+1]
 char function_name[MAX_IDENT+1]
 char_class charClass[128]
 Classify_Line()
 Start_Tokenizer()
 Get_Token()
 Find_Function_Name()
Class::CParams
 Get_Parameters()
 private:
 short is_tabbed
 char *delimiter
 char **files
 Check_Options()
 Clean_Command_Line()
Class::CList
 Is_Empty_List()
 Create_List()
 Append_Element()
 Delete_Element()
 private:
 CElement *list
 Create_Node()
 Destroy_Node()

4.6 Coding
For coding in C++ the following guidelines were followed.

• Rather than using malloc and realloc functions to allocate memory, new was used.

• Rather than using #define, const was used.

 19

• Some variables had to be renamed to adhere to C++ naming convention.

Otherwise, an effort was made to keep the function names the same and the algorithms
the same. Due to the similar structure and syntax of the C and C++ languages, it was
possible at times use the C functions with few changes.
The parameters extracted from the command line were placed as private variables in the
class CParams and were accessed using public access get methods. The list was made a
private variable in the CList class; only the methods in the CList class modified the list.

The global (file scope) variables accessed by the functions Get_Token, Start_Tokenizer,
and Find_Function_Name were made private variables of the class CCounter.

To ensure that the code developed in C++ gave the same result as the C version, the 19
regression tests developed for C code in (Frakes, Fox et al. 1991) were utilized.
Abnormal inputs were provided to check if the code is able to handle them. And the
output generated for the statistics of a valid C file was verified to ensure that it was
accurate. The C++ version was found to perform satisfactorily.
Time taken for the coding of ccount in C++ was 24 hours.

4.7 Process variables captured
The times taken for each step are shown in Table 8. The total time taken for the process
was 93 hours. Though we did not record the times it took to calculate each metric in
identify objects step, we estimate that we did not spend more than six hours calculating
the direct invocation metric and the shared parameter metric—the two metrics that
seemed to give the best results.

Step Time taken

Create stop list 1 hour
Create flow graph 1 hour

Dependency list 2 hours
Identify objects 48 hours

Domain expert analysis 16 hours
Coding 23 hours

Total 93 hours

Table 8. Process Variables

The following data was captured for the ANSI C version and C++ version of ccount.

Statistics for the C version:

• Number of non-commentary lines of code : 749

• Number of files : 7

• Numbers of Functions : 17

 20

Statistics for the C++ version:

• Number of objects : 6

• Number of real objects : 4

• Number of utility objects : 2

• Real objects with one function : 1

• Number of non-commentary lines of code : 679

5 Comparison with Ad Hoc Reengineering effort
This section compares our method with an ad hoc reengineering effort conducted on the
same program by a professional programmer.

5.1 Ad hoc reengineering effort
In the ad hoc method, ccount was reengineered to C++ using standard reusable
components and a singleton design pattern to capture utility classes.

When trying to determine how to reengineering the ccount program, the programmer
considered several possibilities. A very simple approach would have been to take the
modules or functions in the existing language and wrap them in modules or functions
from the other language. This ensures that the resulting product is in the target language
while not changing the functionality and the results by much. This approach is not
optimal since, even though the conversion is complete, the new product does not use all
the benefits and features of the new language. This is especially true when the source
language is C and the target language is C++. Since C++ is backwards compatible to C, a
very simple conversion would be to change the extensions on the files to .cpp and change
printf’s to cout’s and be done. But, the resulting product would still be C in C++ clothing.

Another option is to start from first principles. This involves looking at the problem
statement, identifying the objects that stand out in the problem, and designing and
developing the product from the ground up. The process involves defining attributes and
methods for the various objects and creating classes for these objects. This option
produces better code with most utilization of the features of the destination language than
the first option. Also, since this design is from the ground up, one can take advantage of
various optimizations from the beginning and support quality and maintainability from
the start. This approach, however, is poor reuse because it requires a from-scratch
development effort. This approach takes much longer for the conversion.
In the ad hoc method, the programmer started from first principles in identifying objects
and, once the objects were identified, the existing functions were remapped into methods
that were appropriate for those objects. By doing so, he eliminated some functions, added
new ones, and replaced existing ones with those from the standard C++ libraries.
Sometime he replaced the functions with simpler ones that took advantage of the progress
made in software platforms, and the portability of code that comes with using ANSI
standards.

Since the programmer decided to use the existing functionality and not rewrite from the
ground up, he was left with some functions that did not belong to any of the objects he

 21

identified. Some of these needed to be global since they maintained state information
within the function between calls. These functions were packaged into a utility class
using the singleton design pattern (Gamma, Helm et al. 1994) to achieve a single instance
of the object. In addition, due to time constraints, he left the parsing algorithm used for
the classification of a line the same as it was in the C version.
From the statement of the problem and first principles, the programmer identified three
distinct objects:

• File – An object that needs to be analyzed, and one in which CSL (comment
source lines), NCSL (non-comment source lines), and the ratio of CSL to NCSL
must be determined. At least one file must be analyzed during any invocation.

• Func – An object at the lowest granularity that needs to be analyzed and whose
metric must be reported. Every function belongs to one file, and a file can contain
one or more functions. Code external to a C function is treated as belonging to a
function named external.

• Line – An object that needs to be classified as either external or belonging to a
function. It may be a comment, non-comment, neither, or both. Every line belongs
to only one function and a function has one or more lines.

Figure 5. A UML class diagram of the code produced by the ad hoc method

These objects have certain attributes, and the programmer found a very good match of C
functions with methods of these objects, though with a few changes. In addition, there are
other functions and modules such as error checking and reporting, and command-line
parsing that are either external to these objects or are not confined to one object. Finally,
the sturdier, more generic and more optimal list container from the C++ Standard

 22

Template Library can safely replace the C code for linked-list generation, maintenance,
and deletion.

Figure 5 gives a UML class diagram of the reengineered code. The diagram represents all
of the classes in the resulting code, but it omits some of the methods due to space
constraints. Since the reengineering in this study was done by a professional programmer,
this serves as a baseline for the repeatable method.

5.2 Comparison of Results
In this section we compare the ad hoc and repeatable method on several metrics. First we
compared the two methods in terms of regression testing. As can be seen in Figure 6, the
repeatable method passed more of the ANSI C version regression tests, 11 tests passed,
than did the ad hoc method, which passed eight. One key difference between the two
methods is in total code size (commentary code + source code). As summarized in Figure
7, the ad hoc method produced 2,481 lines of code, an increase of 61% over the C
version. The repeatable method, on the other hand, was virtually the same as the C
version producing 1,547 lines of code. As can be seen in Figure 8, the execution speed
follows a similar pattern, with a small increase in execution speed for the repeatable
method, and a much larger one for the ad hoc method. The differences in execution speed
may be partially caused by the increase in code size.

Figure 6. Number of regression tests passed by the original procedural code, the OO
code developed using the ad hoc method, and the OO code developed using the
repeatable method.

 23

Figure 7. Difference in code sizes of the original procedural code, the OO code
developed using the ad hoc method, and the OO code developed using the
repeatable method.

Figure 8. Difference in execution speed of the original procedural code, the OO code
developed using the ad hoc method, and the OO code developed using the
repeatable method.

The increase in code size was also reflected in numbers of methods. The ad hoc method
produced 59 methods vs. 20 for the repeatable method. The ad hoc method produced four
custom classes and reused the List class from the C++ standard template library. The
repeatable method produced five custom classes. The average number of methods per
class was therefore 14.75 for the ad hoc method and four for the repeatable method.
Of the 59 methods in the ad hoc method, 49 of them were public and 10 were private.
The programmer using the ad hoc method included a large number of accessor methods
in his code (27 in total), so this increase may in part be due to his design decision to make
heavy use of accessor methods. Of the 20 methods produced in the repeatable method, 12
were public and 8 were private. This is much closer to the 16 functions in the procedural
code. The repeatable code had 5 accessor methods, while the procedural code had 2. The
ad hoc method also had an equal or greater number of I/O and read/write methods than
the repeatable method. The ad hoc method produced 2 I/O methods and 23 read/write
methods, while the repeatable method also produced 2 I/O methods, but produced only

 24

17 read/write methods. The original code contained 3 I/O methods and 12 read/write
methods. The number of I/O and read/write methods is suggested as a predictor of good
reuse components in (Selby, 1989). The spider graph in Figure 9 gives an overview of
these method numbers.

Figure 9. Spider graph comparison of metrics related to numbers of methods in
code generated using the ad hoc and repeatable method.

5.2.1 Evaluation using object-oriented metrics
We evaluated the ad hoc and repeatable versions of the code using object-oriented
metrics found in (Chidamber and Kemerer 1994). The metrics were weighted methods
per class (WMC), coupling between object classes (CBO), response for a class (RFC),
and lack of cohesion in methods (LCOM). The other metrics associated with this set,
depth of inheritance tree (DIT) and number of children (NOC), were not used since
neither method produced code with inheritance. The object-oriented metrics are designed
to work on a per class basis. We report them here for each class and also give the average
over all classes in each system. Interpreting these metrics is not always straightforward,
though extreme numbers indicate a possible need to redesign the class (Chidamber and
Kemerer 1994). There is also some indication that higher numbers can lead to more
problems (Chidamber, Darcy et al. 1998).
The weighted-methods-per-class metric gives the number of methods in each class.
Weighting certain methods higher than others can change this number. For example, one
might decide to give a lower weight to accessor methods or private methods. We have
given equal weight to all methods since we have already reported numbers of accessor
and private methods. Table 9 gives the weighted methods per class, which in this case is
the same as the number of methods per class. The methods per class in the code produced
with the ad hoc method are almost always higher than those in the code produced with
the repeatable method.

 25

Ad hoc method Repeatable method
Class WMC Class WMC
Cfile 19 CCounter 6
Cfunc 15 CError 1
Cline 21 CList 6
Util 5 CParams 6
 CReport 1
Mean 15 Mean 4
Median 17 Median 6
Range 16 Range 5

Table 9. Weighted methods per class (WMC) for the ad hoc and repeatable
methods.

For the coupling-between-object-classes metric, a class is considered coupled to another
class if it uses attributes or methods from the other class, or vice versa. Therefore, if class
A is coupled to class B, then class B must be coupled to class A. Note that the coupling
metrics used in the repeatable method were based on many different forms of coupling.
In this study both the ad hoc method and repeatable method produced code in which all
the attributes were private, so coupling occurs if one class uses the methods of another.
Table 10 gives the CBO metrics for each class produced under the different methods. The
numbers for the repeatable method are slightly higher.

Ad hoc method Repeatable method
Class CBO Class CBO
Cfile 3 CCounter 2
Cfunc 1 CError 4
Cline 2 CList 3
Util 1 CParams 1
 CReport 2
Mean 1.75 Mean 2.4
Median 1.5 Median 2
Range 2 Range 3

Table 10. Coupling between object classes (CBO) for the ad hoc and repeatable
methods.

The response for a class is the number of methods in a class plus the number of methods
it calls from other classes. For example, if class A has one method that invokes two other
methods, both from different classes, then the response for class A is three. All methods
are counted only once. Table 11 gives the response for each class produced by the ad hoc
and repeatable methods. The RFC values for the ad hoc method are decidedly higher than
those for the repeatable method. The ad hoc mean is more than triple that of the
repeatable method, and the range is more than double.

 26

Ad hoc method Repeatable method
Class RFC Class RFC
Cfile 28 CCounter 9
Cfunc 17 CError 1
Cline 23 CList 7
Util 6 CParams 7
 CReport 3
Mean 18.5 Mean 5.4
Median 20 Median 7
Range 22 Range 8

Table 11. Response for a class (RFC) for the ad hoc and repeatable methods.

The lack-of-cohesion-in-methods metric tries to measure the cohesiveness of a class. The
higher this number, the less cohesive a class is. The most cohesive classes have an
LCOM value of zero. The LCOM value is based on the notion that in a cohesive class,
most methods will use most of the attributes of the class. If most methods do not use
many attributes, the lack of cohesion is higher. The exact formula is LCOM = max(n � m
– 2 (A1 + A2 + … + Am)) where n is the number of attributes in the class, m is the
number of methods in the class, and Ai is the number of attributes used by method i.
Table 12 give the LCOM values for each class produced by each of the methods. As
shown in the table, most of the LCOM values for the classes in the ad hoc method are
significantly higher than the values for the classes in the repeatable method. The value for
the Cline class is particularly extreme.

Ad hoc method Repeatable method
Class LOCM Class LOCM
Cfile 40 CCounter 8
Cfunc 17 CError 0
Cline 138 CList 0
Util 4 CParams 14
 CReport 0
Mean 49.75 Mean 4.4
Median 28.5 Median 0
Range 134 Range 14

Table 12. Lack of cohesion in methods (LCOM) for the ad hoc and repeatable
methods.

Figure 10 summarizes the object-oriented metrics using a spider graph. The average
metric values for the ad hoc method are higher than those for the repeatable method for
all metrics except the CBO metric.

 27

Figure 10. Spider graph summarizing the object-oriented metrics on a logarithmic
scale

Metric ANSI C Ad hoc Repeatable See
Regression tests
passed

12/17 8/17 11/17 Figure 5

CSL + NCSL 1542 2481 1547 Figure 6
Execution speed 0.0582 sec 0.175 sec 0.0816 sec Figure 7
Public methods N/A 49 12 Figure 8
Private methods N/A 10 8 Figure 8
Accessor methods 2 27 5 Figure 8
Read/Write methods 12 23 17 Figure 8
Input/Output
methods

3 2 2 Figure 8

Avg. WMC N/A 15 4 Table 3
Avg. CBO N/A 1.75 2.4 Table 4
Avg. RFC N/A 18.5 5.4 Table 5
Avg. LOCM N/A 49.75 4.4 Table 6

Table 13. Summary of evaluation metrics used for comparison.

6 Conclusion

6.1 Revised method
In Section 2 we gave an outline of the steps involved in the Pole method (Pole 1991),
which was the method that ours was originally based on. During the course of this study,
we discovered that these steps tended to emphasize some tasks that we thought less
important, and deemphasize some tasks that we thought more important. We feel that the
following list gives a more accurate description of the process.

1. The domain expert creates a function stop list. A stop list contains functions
identified by the domain expert as utility functions that do not perform tasks
specific to the domain.

 28

2. Summary data is collected. The summary data contains information for each
function that is not in the stop list, such as the types and names of parameters,
variables, and functions used in the given function. The summary data includes
information that would be found in a call graph and in dependency and context
lists.

3. Metrics are calculated. Different coupling metrics describe different relationships
between functions, such as how many times one function invokes another or how
many parameters are shared by the functions. In our study we used eight different
coupling metrics and evaluated each one individually for its effectiveness in
identifying objects.

4. Identify candidate objects. The software engineer determines a threshold for each
metric. If the metric for two functions is above the threshold, those functions are
candidates to appear as methods in the same class.

5. Domain expert chooses objects. The domain expert examines candidate objects
and determines whether they are reasonable. Variables common to two or more
functions are examined for their appropriateness as object attributes. Leftover
functions including the functions in the stop list can be converted into individual
objects or packaged as utility objects.

This first step is unchanged from the list in Section 2. The second step in this list is a
combination of steps 2, 3, and the first part of step 4 from the original list. The third and
forth steps here are included in step 4 of the original list. Step 5 is unchanged.

6.2 Summary of results
This study examined two methods for reengineering procedural software systems to
object-oriented systems. Our hypothesis was that it is possible to support this process
with a repeatable method. We empirically evaluated our method to determine its utility,
and found that the repeatable method produced more compact and efficient code, and
passed more regression tests than did the ad hoc method. Analysis of object-oriented
metrics indicated both simpler code and less variability among classes. Particularly
striking was the order of magnitude difference between the average cohesion metric
(LCOM) for the ad hoc and repeatable methods. Table 7 summarizes our findings.

Our analysis raises an interesting issue regarding the use of the repeatable methods. In
general, we expect more variability in the ad hoc method, and we observed this.
Programmers using the ad hoc method are redesigning the code from scratch, so their
different design philosophies will be more apparent than they would be if using the
repeatable method. Since the goal of the repeatable method is to provide the programmer
with a suggested set of methods for each class, different programmers are more likely to
produce similar code.

 29

References
Abd-El-Hafiz, S. K. (2000). "Identifying Objects in Procedural Programs Using

Clustering Neural Networks." Automated Software Engineering 7(3): 239-261.
Achee, B. and D. Carver (1997). "Creating object-oriented designs from legacy Fortran

code." Journal of Systems and Software 39: 170-194.
Canfora, G., A. Cimitile, et al. (2001). "Decomposing legacy systems into objects: an

eclectic approach." Information and Software Technology 43(6): 401-412.
Chidamber, S. R., D. P. Darcy, et al. (1998). "Managerial use of metrics for object-

oriented software: An exploratory analysis." IEEE Transactions of Software
Engineering 24(8).

Chidamber, S. R. and C. F. Kemerer (1994). "A metrics suite for object-oriented design."
IEEE Transactions of Software Engineering 20: 476-493.

Cimitile, G., A. D. Lucia, et al. (1999). "Identifying objects in legacy systems using
design metrics." The Journal of Systems and Software 44: 199-211.

Dunn, M. and J. Knight (1991). Software reuse in an industrial setting: A case study. 13th
International Conference on Software Engineering: 329-338.

Fanta, R. and V. Rajlich (1998). Reengineering object-oriented code. International
Conference on Software Maintenance.

Frakes, W. B., C. J. Fox, et al. (1991). Software engineering in the UNIX/C environment.
Englewood Cliffs, Prentice Hall.

Frakes, W. B. and K. Kang (2005). "Software reuse research: Status and future." IEEE
Transactions of Software Engineering 31(7): 529-536.

Frakes, W. B., G. Kulczycki, et al. (2008). An empirical comparison of methods for
reengineering procedural software systems to object-oriented systems. 10th
International Conference on Software Reuse. H. Mei. Beijing, China, Springer:
376-389.

Frakes, W. B., G. Kulczycki, et al. (2006). Case study of a method for reengineering
procedural systems into OO systems. 9th International Conference on Software
Reuse. M. Morisio. Turin, Italy, Springer: 184-202.

Gamma, E., R. Helm, et al. (1994). Design patterns: Elements of reusable object-oriented
software, Addison-Wesley.

Gui, J. (2003). "Software reuse through reengineering of legacy systems." Information
and Software Technology.

Lanza, M. (2003). Object-oriented reverse engineering, University of Bern. PhD.
Liu, S. and N. Wilde (1990). Identifying objects in a conventional procedural language:

An example of data design recovery. Conference of Software Maintenance. San
Diego, CA, IEEE CS Press: 266-271.

Livadas, P. E. and T. Johnson (1994). "A new approach to finding objects in programs."
Journal of Software Maintenance: Research and Practice 6: 249-260.

McFall, D. and G. Sleith (1993). Reverse engineering structured code to an object
oriented representation. 5th International Conference on Software Engineering
and Knowledge Engineering. San Francisco, CA: 86-93.

Newcomb, P. and G. Kotik (1995). Reengineering procedural into OO systems. 1995
Working Conference on Reverse Engineering.

Pole, T. P. (1991). Pole method for C to C++ reengineering. W. B. Frakes.
Pressman, R. S. (2005). Software Engineering: A Practitioner's Approach, McGraw-Hill.

 30

Siff, M. and T. Reps (1999). "Identifying modules via concept analysis." IEEE
Transactions on Software Engineering 25(6): 749-768.

Suryanarayanan, L. and W. B. Frakes (2003). Reengineering with reuse: A case study,
Virginia Tech.

Valasareddi, R. and D. A. Carver (1998). Graph-based object identification process for
procedural programs. 1998 Working Conference on Reverse Engineering.

